

Cheminert® Model C55 and C65(Z) Selectors

Installation and Maintenance

The Cheminert® C55 (HPLC) and C65 (LC) series selector are integrated motor/valve assemblies designed specifically to be built into OEM systems.

Initial Precautions

After unpacking the selector, leave the protective cap over the valve ports until you are ready to install the unit. As supplied, all surfaces are clean and free of contaminants, and must be kept clean to prevent valve damage. Open ports and fittings cause unnecessary risk of particulate matter entering the valve and scratching the sealing surfaces, which is the most frequent cause of premature valve failure.

WARNING

The most common source of particulate and chemical contamination is tubing which has not been properly cleaned before installation in the valve. Failure to observe proper cleanliness procedures during installation voids the manufacturer's warranty.

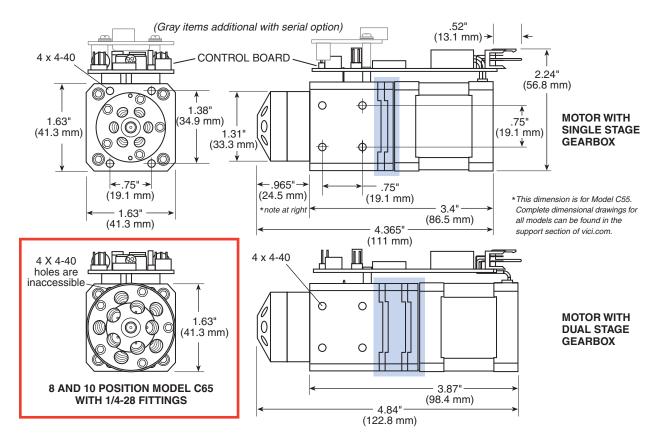


Figure 1: Dimensions for models with single stage gearbox (top) and dual stage gearbox (bottom). The shading indicates the area to check for a quick model identification.

Valve Schematics and Switching Times

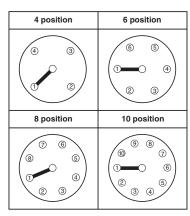


Figure 2: Valve schematics

	Single stage		
	1 pos.	Each additional pos.	
4 pos.	150 ms	111 ms	
6 pos.	115 ms	71 ms	
8 pos.	96 ms	55 ms	
10 pos.	85 ms	43 ms	

Table 1: Time red	uired to move	e beween	positions

Note: On the initial power up, the actuator automatically executes a startup sequence to find its location flag. This sequence, which takes 1.45 seconds on a single stage actuator and 4.2 seconds on a dual stage actuator, ends with the valve in position 1. After the sequence is finished, the valve can be positioned as desired.

Installation

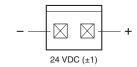
Mounting

Mount the unit in a horizontal position. Avoid any orientation that positions the control board on the bottom, where it could be damaged by leakage. Mounting hole locations are shown in **Figure 1**. There are four 4-40 tapped mounting holes on the valve face of the gearbox and another four on the side of the gear housing. NOTE: 8 and 10 port valves with 1/4-28 fittings have larger bodies which block the mounting holes on the valve face, as highlighted in the red box of **Figure 1**.

Electrical Connections

Cables for electrical connections can either be ordered from VICI or constructed in-house. To order from VICI, request product numbers I-25176 for the I/O control cable and I-24780 for the power cable.

If you prefer to make your own cables for I/O control and power:


- 1. Use a Molex 26-03-4020 shell and 08-58-0111 contacts with 22 awg stranded wire to supply 24 volt current (3 amps recommended) to the connector marked J1. (See Figure 3.) The motor can draw as much as 2.5 amps during movement so make sure there is adequate power available, and do not share power with other sensitive circuits.
- Use an Amphenol 65846-015LF shell and 47715-000LF contacts to make the connection to Connector J3, which provides the contact closure input and detects the output of the position sensor. (See Figure 4 and Table 2.)

Caution: Do not attempt to source or sink more than 20 mA from either output.

Motor Control Methods

Step Contact Closure

Applying a connection between the common and "A contact" pins causes the selector to move to the next position in the direction set by Jumper 1. (See "Jumper Settings" on page 3) The connection must be opened before another step can be made.

Dual stage

Each additional pos.

230 ms

173 ms

133 ms

118 ms

1 pos.

269 ms

212 ms

184 ms

154 ms

6 pos.

8 pos.

10 pos.

Figure 3: Power connector J1, pin view

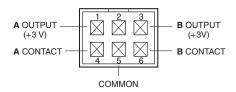


Figure 4: Control connector J3, pin view

Pin#	Color	Function
1	Green	A output (3.3 VDC)
2		Unused
3	White	B output (3.3 VDC)
4	Black	A contact
5	Shield	Common
6	Red	B contact

Table 2: Connector J3 pin assignments (Colors are in reference to VICI cable I-25176)

Home Contact Closure

Applying a connection between the common and "B contact" pins causes the selector to move to the HOME position (position 1) in the direction set by Jumper 1. (See "Jumper Settings" on page 3) The connection must be opened before another step can be made.

Jumper Settings

Factory-set jumpers determine the actuator motor's angle of rotation (a function of the number of ports in the valve head) and direction of rotation; the default direction is clockwise (*i.e.*, stepping from position 1 to position 2), as viewed from the motor end of the assembly.

Figure 5 shows the jumper locations, with a jumper installed in position 1. *Jumper 4 is always installed for multiposition (selector) applications.* (For two position applications, refer to Technical Note 819.)

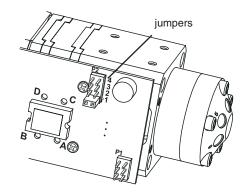


Figure 5: Location of jumpers

Configuration information is presented verbally below. For a graphic presentation of the decision process, refer to **Figure 6**.

Setting the Rotation Direction

- 1. Interrupt power to the motor by detaching power connector J1.
- 2. Remove/install jumper 1 as required. (Refer to **Table 3**)
- 3. Re-attach connector J1. The change takes effect when the motor is powered up.

Direction	Jumper 1
Clockwise	No
Counterclockwise	Yes

Table 3: Jumper settings for rotation direction (as viewed from the motor end)

Setting the Angle of Rotation

If you are changing the valve head to one with a different number of ports, jumpers 2 and 3 must be reconfigured. Remember that jumper 4 is always installed for multiposition (selector) applications.

To set the motor for the proper amount of rotation:

- 1. Interrupt power to the motor by detaching connector J1.
- 2. Refer to **Figure 1** to determine if the unit has a single stage gearbox or a dual stage gearbox.
- 3. Consult **Table 4** to determine the correct jumper arrangement, and install jumpers as indicated. (For the purpose of determining rotation, the number of ports referenced means the number of ports forming a circle around the center port; the center port itself is not counted.)

Siligle stage			<u>Duai stage</u>		
Jumper:	2	3	Jumper:	2	3
4 position	Yes	Yes	6 position	Yes	Yes
6 position	No	No	8 position	No	No
8 position	Yes	No	10 position	Yes	No
10 position	No	Yes	12 position	No	Yes

Single stage

Table 4: Jumper settings for number of ports

4. Re-attach connector J1. The change takes effect when the motor is powered up.

Restoring the Default Baud Rate

To restore the baud rate to the factory default of 9600:

- 1. Interrupt power to the motor by detaching power connector J1.
- 2. Remove jumpers 3 and 4, noting their location for proper reinstallation.
- 3. Install a jumper as shown in Figure 6.

Dual stans

Figure 6: Jumper position to restore default baud rate

- 4. Re-attach connector J1. The rate change takes effect when the motor is powered up.
- 5. Detach power connector J1 and restore jumpers 3 and 4 to their previous configuration.
- 6. Re-attach connector J1.

Single stage gearbox/ Dual stage gearbox 4 port/ 6 port 6 port/ 8 port Single contact closure control 8 port/ 10 port (Not recommended for use with serial port control) 10 port/ 12 port Two position (Technical note 819) 4 port/ 6 port 6 port/ 8 port **Dual contact** closure control 8 port/ 10 port 10 port/ 12 port 4 port/ 6 port 6 port/ 8 port Clockwise rotation 8 port/ 10 port 10 port/ 12 port Multiposition (Technical note 821) 4 port/ 6 port 6 port/ 8 port Counterclockwise rotation 8 port/ 10 port 10 port/ 12 port

Figure 7: Decision tree for setting jumpers.

NOTE: The gearbox type is sensed automatically. For a visual determination, refer to Figure 1.

Actuators with Optional Serial Control (must be specified at time of purchase)

RS-232 and RS-485 communication require a terminal emulation program. There are many emulators available for free on the internet. Though the programs vary, in general you will select "Serial" from among various types of connections, select the COM port which will be used, name the connection, and set the port baud rate as shown in the chart on page 6 (9600, or 9K60, is the factory default). The rest of the configurations are fixed at no parity, 8 data bits, 1 stop bit, no hardware or software handshaking.

A three-pin connector is used for the serial interface: pin assignments are listed in the table below right. Use VICI cable I-22697 or make your own with the parts named below the table. The implementation of RS-485 is half-duplex two wire with ground, and uses the same 3 pin output connector as RS-232.

With the software running, check the communication link between the computer and the serial port by typing /?<enter>. If the link is functioning, the menu at left below will appear on your monitor:

Control Command List

GO[nn] Move to nn position

CW[nn] Move Clockwise to nn Position

CC[nn] Move Counter Clockwise to nn Position

CP Returns Current Position
SB[nnnnn] Set the Baud Rate to nnnnn

VR Firmware Version /? Displays This List

Pin #	RS-232	RS-485
1	Ground	Ground
2	Transmit to host	A (-)
3	Receive from host	B (+)

Requires: Amphenol shell 102241 Amphenol pins 187756-1 or VICI cable I-22697

Serial Communication Protocol

Serial communication is based on an ASCII string protocol. Carriage Return (OD hex) characters parse the communications by defining the end of each command. Software flow control (Xon/Xoff) and hardware handshaking are not supported. The table below describes and explains all the commands available. A fuller explanation follows.

Serial Commands		
CCnn	Sends the actuator counterclockwise to position nn (from 1 to NP)	
СР	Displays the current position	
CWnn	Sends the actuator clockwise to position <i>nn</i> (from 1 to NP)	
E+/E-	Enable/disable the terminal echo and prompt (not available for RS-485)	
GH or HM	Sends the actuator to the home position (position 1)	
GOnn	Sends the actuator to position nn (from 1 to NP) via the shortest route	
IC+/IC-	Enable/disable the invalid command response	
LF+/LF-	Add/remove line feed to serial string, output only (not available for RS-485)	
MD	Displays the unit model number	
MN or ST	Sends the actuator to the next position	
QS+/QS-	Enable/disable quiet serial output during startup (not available for RS-485)	
R+/R-	Enable/disable position reporting	
RC	Report the valve configuration	
SB	Displays the current baud rate	
SBnnnn	Sets the baud rate. Refer to the table on page 6 for <i>nnnn</i> values.	
SD	Show the current direction	
SDnn	Set the direction to <i>nn</i> (CC or CW). (Overrides the jumper setting.)	
SN	Displays the unit serial number	
VR	Displays the part number and date of the firmware	
/?	Displays a list of valid commands	

Notes: In this chart, nn represents numbers or letters to be entered.

Command Reference

NOTE: Repeated direction reversals (**CC** and **CW** commands) without passing the internal orientation flag located between the two topmost ports (for example, ports 5 and 6 of a 6 position model) are not recommended, due to possible rotor slippage.

CC[*nn*] Moves the actuator in a counterclockwise direction, where

nn = a number from 1 to the current set number of positions (set by jumper—see page 3)

Examples

Command: CC<enter>

Sends the actuator counterclockwise one position

Command: CC3<enter>

Sends the actuator counterclockwise to position 3

CP Displays the current position of the actuator

Example

Command: CP<enter>

Returns (via the serial port) the current position in numeral format

CW[*nn*] Moves the actuator in a clockwise direction, where

nn = a number from 1 to the current set number of positions (set by jumper—see page 3)

Examples

Command: **CW**<enter>

Sends the actuator clockwise one position

Command: CW3<enter>

Sends the actuator clockwise to position 3

SB [*nnnn*] Sets the baud rate, where

nnnn = a value from the table at right

Example

Command: SB19K2<enter>

Sets the baud rate to 19200

Daud Tate	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
4800	4K80
9600	9K60
19200	19K2
38400	38K4
57600	57K6
115200	115K

Raud rate | nnnn

GO[*nn*] Moves the actuator to position nn via the shortest path, where

nn = a number from 1 to the current set number of positions (set by jumper—see page 3)

Examples

Command: GO<enter>

Advances the actuator to the next position

Command: GO3<enter>

Moves the actuator to position 3 via the shortest path

VR Reports the current firmware version of the main PCB (via the serial port)

Example

Command: VR<enter>

Returns (via the serial port) the current revision of the firmware

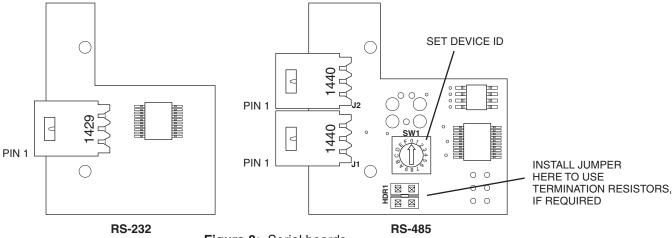


Figure 8: Serial boards

Additional Information on the RS-485 Option

Hardware Protocol

The RS-485 hardware protocol is half-duplex implementation—two wires with a ground. There are two connectors, J1 and J2, which are connected in parallel to allow easy daisy chaining of multiple devices.

Hardware Termination

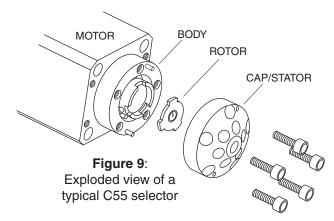
The RS-485 port on the host computer or controlling device generally includes terminating resistors, so on short cables no termination is required. However, if many devices are attached and/or the actuator is on the end of a long communication cable, the termination jumpers on the furthest device from the master RS-485 controller should have termination enabled. To use termination resistors, install a jumper on the header labeled HDR1, oriented as shown in **Figure 8**.

Hardware ID Set

The firmware requires a serially-addressed ID, which on this board is set by the 16 position rotary switch labeled SW1. The ID is set either as a number from 0 - 9 or a letter from A - F, as selected by the arrow on the face of SW1.

Software Protocol

The software protocol requires a forward slash [/] as a beginning-of-message character, followed by a single character ID. The end-of-message character which terminates the command is a <CR>. The standard RS-232 serial port commands are then supported within that protocol, with the exceptions noted below.


Example:

With the settings in **Figure 8**, the RS-232 command **VR**<enter> becomes **/0VR**<enter> in the RS-485 protocol; **/** is the start-of-message character, **0** is the current ID of the device, and **VR**<enter> is the command to be executed.

NOTE: Of the commands on listed on page 5, **E+/E-**, **LF+/LF-**, and **QS+/QS-** work only for RS-232; they are not available in RS-485 operation.

Cleaning and Rotor Replacement

These valves have polished sealing surfaces which must be protected during any disassembly or cleaning procedure. Work in a clean environment and always set parts on a soft tissue or clean paper. Cleaning a valve can often be accomplished by flushing all the lines with appropriate solvents. Do not disassemble the valve unless system malfunction is definitely isolated to the valve.

Disassembly (Refer to Figure 9)

- 1. Use a 3/32" hex driver to remove the 5-40 socket head screws that secure the stator to the valve body. Alternate among the five screws in the sequence indicated in Figure 10, loosening them in quarter-turn (90°) increments until all load is removed.
- 2. To ensure that the sealing surface of the stator is not damaged, rest it on its outer face. Or, if the tubing is still connected, leave it suspended by the tubing.
- 3. With your fingers or a small tool, gently pry the rotor away from the driver.
- 4. Examine the rotor sealing surface for scratches. If you see any, the rotor should be replaced.
- 5. Examine the stator sealing surfaces. If scratches are visible between the ports, that part should be replaced or resurfaced. Call Valco for help in determining if resurfacing is feasible.
- 6. Clean all the parts thoroughly with an appropriate solvent, taking care that no surfaces get scratched. (A common problem with HPLC is the formation of buffer crystals, which are usually water-soluble.) It is not necessary to dry the rotor.

Reassembly

- 1. Replace the rotor in the driver, making sure that the rotor sealing surface with its engraved flow passages is facing out. The tabs on the rotor have an asymmetrical pattern to prevent assembly with improper orientation.
- 2. Replace the stator. Insert the five socket head screws and tighten them gently until they start to get snug. Alternate among the five screws in the sequence indicated in Figure 10, tightening them in quarter-turn (90°) increments until the stator is flush against the valve body.
 - Do not overtighten the screws they simply hold the assembly together and do not affect the sealing force, which is automatically set as the screws pull the stator against the valve body.
- 3. Test the valve by pressurizing the system. If it doesn't hold pressure, the valve should be returned to Valco for repair.

Figure 10: Loosening and tightening order

North America, South America, and Australia/Oceania contact:

Valco Instruments Co. Inc.

P.O. Box 55603 Houston, TX 77255 Sales: (800) 367-8424

Tech: (713) 688-9345 Fax: (713) 688-8106 valco@vici.com

Europe, Asia, and Africa contact:

VICI AG International

Parkstrasse 2 CH-6214 Schenkon Switzerland

Phone: +41 41 925 6200 Fax: +41 41 925 6201 info@vici.ch Fax: 8 Cheminert® and VICI® are registered trademarks of Valco Instruments Co. Inc. and VICI AG

TN-821 Rev 6/20